工学 >>> 控制科学与技术 >>> 自动控制理论 控制系统仿真技术 机电一体化技术 自动化仪器仪表与装置 机器人控制 自动化技术应用 自动控制技术其他学科
搜索结果: 1-15 共查到控制科学与技术 微型机器人相关记录28条 . 查询时间(0.019 秒)
2023年5月10日,来自中国科学院深圳先进技术研究院集成所智能仿生研究中心的徐升和徐天添研究团队合作,提出了一套针对微型仿鱼磁驱动机器人的复杂运动学习控制方法,通过宽度学习网络训练获得了可控磁场变化与仿鱼机器人多种动作基元之间的关系规律,实现了仿鱼机器人的复杂运动,并且本方法无需复杂调参,并具有优异鲁棒稳定性,保障了运动过程不受外界扰动影响。
超疏水微型机器人可以在外界刺激下在水面上高效游动,围绕这一现象科学家展开研究,探索这一特性在相关领域的应用前景,例如细胞操作、净化水源等。然而,目前大部分对于超疏水微型机器人的研究均是围绕单一刺激的驱动模式,使得超疏水微型机器人的运动和功能在复杂的水环境中受到限制。
超疏水微型机器人可以在外界刺激下在水面上高效游动,围绕这一现象科学家们展开了诸多研究,探索它的这一特性在诸多领域的应用前景,例如细胞操作,净化水源等。然而,目前大部分对于超疏水微型机器人的研究都是围绕单一刺激的驱动模式,使得超疏水微型机器人的运动和功能在复杂的水环境中受到了限制。
德国马克斯·普朗克智能系统研究所的科学家将机器人技术与生物学相结合,为大肠杆菌配备人工组件,构建出生物混合机器人,未来有望执行抗癌任务。相关研究刊发于最新一期《科学进展》杂志。
2022年3月29日,中国科学院深圳先进技术研究院集成所智能仿生中心团队在微型机器人领域取得新进展。针对相同磁场下多个磁驱动软体微型机器人接收相同磁场而难以独立控制的问题,团队提出了一种完全解耦的多磁驱动软体微型机器人独立控制策略,首次实现了4个磁性软体微型机器人的独立位置控制和3个磁性软体微型机器人的独立路径跟随控制。
自然界中许多昆虫都具有独特的材料特性及优异的运动性能,如昆虫体表往往具有超疏水特性,能快速在水面滑行、跳跃;具有轻薄的折叠翼、灵敏的复眼;能爬行、能钻土、能游泳、能飞翔等。如何模仿昆虫研制出功能新颖、多样的微型机器人,揭示微观尺度下新的现象和规律并服务于人类,是科研人员思考和面对的问题。
柔性微型机器人具有优良的环境适应性、行动隐蔽性和可集群化作业的特点,在灾后搜救、环境监测、侦察监听等隐蔽狭小空间作业场合具有极大的应用潜力。但是,由于柔性材料具有低刚度、易变形的特点,柔性执行机构普遍存在着驱动能力弱、运动精度差的问题,给柔性机器人的灵活运动和精确控制带来挑战。
一直以来,机器人被广泛用于汽车制造、飞机喷漆等工业自动化领域,但用于生物医学的微结构部件装配尚未实现自动化。随着制造业的微型化,目前加工的微结构只有几十微米或几百微米长,如何对这么小的结构进行装配为该领域面临的一项挑战。
能够逆着血流方向移动的微型载药机器人,有朝一日可能会被用来向癌细胞直接输送化疗药物。据《新科学家》报道,德国斯图加特马克斯·普朗克智能系统研究所的Metin Sitti及其同事开发出了一种名为“微滚筒”的微型机器人,可以携带抗癌药物,并选择性地瞄准人类乳腺癌细胞。研究小组从人体内的白细胞中获得了设计机器人的灵感,这些白细胞可以逆着血液流动的方向沿着血管壁移动。
由外部磁场驱动的不受束缚的软体微型机器人因其软而灵活的身体结构,在微装配、微创诊断、靶向送药等方面都有着巨大的应用前景。论文报道了一种以硅胶为基质的带磁性颗粒的软体薄膜微型机器人,可以在外界旋转磁场作用下自动形成螺旋形状,并在粘性液体中游动。与刚性机器人相比,软体薄膜机器人可与周围环境发生柔性接触,在未来生物医学应用中,可以避免给组织器官造成损伤。磁驱动软体薄膜微型机器人在靶向给药,例如针对消化道...
由德国马克斯·普朗克研究所科学家带领的一个国际团队最近开发出一种微型机器人,能迅速清除工业废水中的污染物和重金属,经回收处理后还能循环利用,有望带来一种高效经济的污水净化方法。
近日,研究人员设计并制造出一种微型机器人,它不仅能在水面行走,还能像水黾一样在水面任意跳跃。水黾科昆虫十分轻盈,可以在水面上高高跳起,它们利用尤为多毛的脚在水面上划行前进。此前,工程师已经设计出仿水黾机器人,它们可以在水面行走,但却从不能复制昆虫跳跃和逃脱的能力。研究人员近日在《科学》杂志网络版报告说,这款新的虫型机器人大概有水黾的两倍大小,重量仅为68毫克,远远小于水面张力对同等面积物体的承重。
设计了一种新型仿龟的柔性微型机器人,它具有四条腿并能在水下爬行和游动,其中龟腿由一种智能薄膜ICPF(Ionic Conducting Ploymer Film)驱动。ICPF具有被低电压驱动、柔性和快速响应的特点。为了提高机器龟的可靠性和灵活性,我们运用伪刚体动力学法(PRBDM)建立了机器龟腿的动力学模型,此模型是基于静力学和运动学并考虑了动态影响因素建立起来的。然后,分析了机器龟腿的角位移幅...
据美国科学日报报道,日前,美国普渡大学的研究人员成功研制一种磁性“铁磁纸”,它可用于制造手术仪器中的低成本“微型发动机”,研究细胞的微型镊子,微型机器人以及小型扬声器等。
据《每日科学》网站4月9日报道,苏黎世联邦理工学院的研究人员首次制成了与细菌大小相当的微型机器人,旨在帮助更多的病患恢复健康。

中国研究生教育排行榜-

正在加载...

中国学术期刊排行榜-

正在加载...

世界大学科研机构排行榜-

正在加载...

中国大学排行榜-

正在加载...

人 物-

正在加载...

课 件-

正在加载...

视听资料-

正在加载...

研招资料 -

正在加载...

知识要闻-

正在加载...

国际动态-

正在加载...

会议中心-

正在加载...

学术指南-

正在加载...

学术站点-

正在加载...