工学 >>> 化学工程 >>> 化学工程基础学科 化工测量技术与仪器仪表 化工传递过程 化学分离工程 化学反应工程 化工系统工程 化工机械与设备 无机化学工程 有机化学工程 电化学工程 高聚物工程 煤化学工程 精细化学工程 造纸技术 毛皮与制革工程 制药工程 生物化学工程 化学工程其他学科
搜索结果: 1-15 共查到化学工程 锂金属电池相关记录36条 . 查询时间(0.18 秒)
高能量密度锂金属电池(LMB)中往往存在较高的反应和扩散势垒,导致其电化学动力学缓慢,并限制其商业化应用。以转化型锂硫电池为例,锂硫电池正负极电化学过程具有典型的自串联反应特征,包含Li+脱溶剂化到后续的硫物质转化反应或者锂电沉积的反应过程,并形成对应的五种典型的能垒, Li(溶剂)x+去溶剂化、硫物质的氧化和还原、Li+扩散及Li0扩散与成核。在反应过程中,电极/电解液界面处的Li(溶剂)x+首...
近日,上海科技大学物质科学与技术学院陈刚课题组研发了弹性可压缩的还原氧化石墨烯海绵(rGO-S),构建了高效稳定的锂金属电池,相关成果发表于国际知名学术期刊Nano Letters。该研究揭示了镀锂产生的内应力对锂枝晶生长的影响,并通过构建弹性可压缩的基底释放镀锂内应力,实现了无枝晶的锂沉积。
锂金属电池(LMBs)展现出了超过400 Wh kg?1高能量密度的发展潜力,因此被优先考虑作为下一代储能设备。然而,不可控的枝晶生长、难以捉摸的界面化学和不稳定的固体电解质界面(SEI)极大地威胁了LMBs的安全性和耐久性,阻碍了其市场化应用。由于结构的可调性,有机分子表现出构建人工SEI的非凡能力,这有利于清晰化界面化学,诱导Li金属的形核和沉积。此外,一些基于聚合物有机分子设计的SEI具有高...
锂金属电池因其在改善能量密度方面的巨大潜力被认为是最有望取代传统锂离子电池而实现实际应用的新型储能装置。然而,由于不均匀的锂形核和沉积以及脆弱的原生固态电解质界面(SEI)层的形成,锂金属负极(LMA)在实际工作过程中会不可避免地产生锂枝晶,这严重恶化了电池的电化学性能,甚至加剧了电池的安全风险。在众多稳定锂金属负极的策略中,通过引入多功能添加剂来优化电解质被认为是提高电解质与LMA相容性的一种很...
过去几十年来,手机、笔记本电脑和其他个人设备的蓬勃发展得益于锂离子电池,但随着气候变化,要求为电动汽车和电网规模的可再生能源储存提供更强大的电池,锂离子技术可能已经不再够用。锂金属电池的理论容量比锂离子电池大一个数量级,但其缺点是“易燃易爆炸”。据2023年11月9日发表在《物质》杂志上的论文,美国芝加哥大学研究人员提出了一种解决这个长达数十年的问题的方法:使用无溶剂的无机熔盐来制造高能量密度、安...
近日,上海科技大学物质科学与技术学院陈刚课题组研制出可快充且稳定无枝晶的锂金属电池,相关研究成果发表于国际知名学术期刊Journal of Materials Chemistry A。 便携式电子设备和电动汽车的快速发展需要高能量密度的可充电锂离子电池锂金属负极因具有高比容量、低密度和低化学势的优点,被认为是实现高能量密度的最佳材料。然而,锂金属电池在重复充放电循环过程中形成的枝晶和死锂会导致...
锂离子电池(LIBs)在低温(<-20 ℃)下的稳定运行,对于电动汽车的推广和应用至关重要。在低温下,锂离子(Li+)迁移速率降低、反应速率减慢,导致电池内阻增大、可逆容量下降、电动汽车的续航里程减少,甚至可能诱发锂枝晶生长,增加安全隐患。与石墨负极相比,金属锂负极具有更高的能量密度(3860 mAh g-1),是LIBs的理想负极材料。探讨金属锂的微观结构和性能随温度的变化规律,是突破LIBs低...
锂离子电池(LIBs)在低温(<-20 ℃)下的稳定运行,对于电动汽车的推广和应用至关重要。在低温下,锂离子(Li+)迁移速率降低、反应速率减慢,导致电池内阻增大、可逆容量下降、电动汽车的续航里程减少,甚至可能诱发锂枝晶生长,增加安全隐患。与石墨负极相比,金属锂负极具有更高的能量密度(3860 mAh g-1),是LIBs的理想负极材料。探讨金属锂的微观结构和性能随温度的变化规律,是突破LIBs低...
为实现“碳中和、碳达峰”的目标,亟需寻找下一代清洁的高能量密度电池。与石墨负极相比,锂金属负极展现出高理论容量(3860 mA h g-1)和低的电位。然而,金属锂的超高反应活性、固体电解质中间相(SEI)的生成与破裂、锂枝晶的产生,导致了低的库仑效率(CE)低,甚至会导致电池内部短路、过热及起火。在前期研究中,中国科学院苏州纳米所蔺洪振团队等构筑人工SEI层调控Li传输以抑制枝晶的形成(Adv....
厦门大学化学化工学院孙世刚院士团队黄令教授在锂金属电池锂金属负极界面稳定性研究取得新进展,相关成果以“Surface modification using heptafluorobutyric acid to produce highly stable Li metal anodes”为题,在线发表于Nature Communications(DOI: 10.1038/s41467-023-387...
锂金属因具有高理论容量(~3860 mAh g-1)和低氧化还原电位(相对于标准氢电极为-3.04 V),是颇有前景的锂电池电极材料之一。然而,锂枝晶的生长将会顶穿隔膜,引起电池短路热失控,甚至引燃电解液等,存在安全隐患。使用具有高机械强度的固态电解质代替电解液,可以有效阻止锂枝晶生长,从而提高锂金属电池(LMBs)安全性。相比无机电解质较高的界面接触阻抗,聚合物电解质(SPEs)可与电极形成紧密...
高能量密度锂金属电池(Lithium metal batteries)是一种极具前景的新一代储能电池系统,能显著提升电动汽车的续航历程。然而,高度活性的锂金属负极与经典碳酸酯类电解液之间存在严重副反应,极大影响了电池的循环寿命和安全性;而对于锂负极稳定性较好的醚类电解液则由于本征抗氧化能力差,而长期被高电压电池体系排除在外。因此,如何调控电解液与电极界面反应机制从而提升活性正负极稳定性一直是学术界...
近日,厦门大学化学化工学院杨勇教授课题组在全固态锂金属电池锂金属负极失效机制研究取得重要进展,相关成果以“Understanding the failure process of sulfide-based all-solid-state lithium batteries via operando nuclear magnetic resonance spectroscopy”为题发表在Natu...
开发能量密度高、安全性能好的锂金属电池体系具有重要意义。相比于传统嵌入反应型电池,锂-氟化铁转换反应型电池在质量和体积能量密度上具有2-3倍的优势(例如,相比于Li-LiCoO2的350 Wh/kg,Li-FeF3的850 Wh/kg),可以满足下一代移动电源对超长续航能力和便携性的要求。然而,该电池体系通常会遭受正极转换产物的失活和溶解,导致氟损失和容量快速下降等问题。锂-氟化铁体系的固态电池构...
开发能量密度高、安全性能好的锂金属电池体系具有重要意义。相比于传统嵌入反应型电池,锂-氟化铁转换反应型电池在质量和体积能量密度上有着2-3倍的优势(如Li-FeF3的850 Wh/kg,相比于Li-LiCoO2的350 Wh/kg),可以满足下一代移动电源对超长续航能力和便携性的要求。然而,该电池体系通常会遭受正极转换产物的失活和溶解,导致氟损失和容量快速下降等问题。锂-氟化铁体系的固态电池构架可...

中国研究生教育排行榜-

正在加载...

中国学术期刊排行榜-

正在加载...

世界大学科研机构排行榜-

正在加载...

中国大学排行榜-

正在加载...

人 物-

正在加载...

课 件-

正在加载...

视听资料-

正在加载...

研招资料 -

正在加载...

知识要闻-

正在加载...

国际动态-

正在加载...

会议中心-

正在加载...

学术指南-

正在加载...

学术站点-

正在加载...