>>>
搜索结果: 1-15 共查到金属相关记录5796条 . 查询时间(0.341 秒)
2024年4月20日,中国科学院大连化学物理研究所催化基础国家重点实验室纳米与界面催化研究中心(502组群)傅强研究员团队在金属纳米催化剂的动态分散研究方面取得新进展,发现含水氧化性气氛可以诱导担载Cu纳米颗粒在室温下的自发氧化分散。
中国科学院重庆绿色智能技术研究院3D打印技术研究团队设计了同轴高速成像系统以监控整个激光选区熔化成形过程,能够有效识别关键工艺现象,为实现全过程质量控制提供了新方法。相关成果发表在《IEEE工业信息学汇刊》(IEEE Transactions on Industrial Informatics)上。
加工硬化是金属结构材料拉伸塑性的基础。加工硬化的前提是拉伸变形在晶粒内部形成、增殖并储存的位错,位错之间以及位错与界面、析出相等的交互作用引起加工硬化。当晶粒细化至纳米尺度时,晶粒内部较难产生并储存位错,降低了加工硬化能力,引起了低塑性瓶颈。在高强度纳米结构金属中,如何形成并储存位错是实现加工硬化的难点。
加工硬化是金属结构材料拉伸塑性的基础,其前提是拉伸变形时在晶粒内部形成、增殖并储存的位错,位错之间以及位错与界面和析出相等的交互作用引起加工硬化。当晶粒细化至纳米尺度时,晶粒内部则很难产生并储存位错,降低了加工硬化能力,引起低塑性瓶颈。在高强度纳米结构金属中,如何形成并储存位错是实现其加工硬化的难题,更是挑战。
传统方法中使用光刻胶辅助构建“法拉第3D打印”的微电场,不稳定且不可控,容易干扰和破坏打印。近期,上海科技大学物质科学与技术学院冯继成课题组在电场空间构型控制方面取得了重要突破,提出了一种新的电场构筑方法:利用三块平行极板的电势精确控制电场空间构型,中间极板类似电饭煲中的蒸笼结构,其阵列通孔用于电力线“画笔”笔头穿过,最下端极板作为打印基底。通过这一方法得到的电场稳定可控,可精确控制打印的纳米结构...
在新型储能技术路线中,以全钒液流电池为代表的液流电池储能技术本质安全、可灵活部署,成为长时储能技术的首选电化学储能技术路线。然而,受制于钒资源释放量,现阶段全钒液流电池产业化发展面临成本高这一问题。因此,研发低成本液流电池新体系新技术,是解决现阶段液流电池产业化发展瓶颈的途径。
2024年3月27日6时51分,中国航天科技集团有限公司上海航天技术研究院研制的长征六号甲遥三运载火箭在太原卫星发射中心成功发射,将云海三号02星准确送入预定轨道,发射任务圆满成功。由中国科学院国家空间科学中心太阳活动和空间天气重点实验室(以下简称“空间中心天气室”)牵头研制的我国首个“抗辐射铝钽金属复合材料应用示范产品”随任务一同发射入轨,开展长期在轨验证和示范应用。
2024年3月25日,锦州市金属新材料行业协会常务副会长、秘书长苏士义;辽宁汤河子经济开发区党工委副书记、管委会常务副主任李志新,管委会副主任、太和区招商三局局长刘佳伟,企业服务中心主任、太和区招商三局副局长苏畅;锦州长城耐火材料有限公司董事长赵文厚等一行来访冶金工业规划研究院,与党委副书记、副院长(主持工作)肖邦国及冶炼原料处、标准与认证中心专业人员,共同就合力助推锦州市金属新材料行业和辽宁汤河...
双碳战略下我国的能源结构转型与国家能源安全,离不开清洁能源的规模化利用。2023年我国发电端新增装机量中,以风电、光伏为主的可再生能源占比首次突破50%。因此,风光配储已经被提升到国家发展和安全的战略高度。在诸多新型储能技术路线中,以全钒液流电池为代表的液流电池储能技术,本质安全、可灵活部署,因此成为了长时储能技术中的首选电化学储能技术路线。然而,受制于钒资源释放量的限制,现阶段全钒液流电池产业化...
高性能金属材料组织与性能调控团队依托辽科大钢铁特色平台,开展了大量应用基础研究,在服务钢铁产业升级的同时助力了材料学科的发展。目前,高性能金属材料组织与性能调控团队由9名教师和若干名研究生组成,其中教授3人、副教授2人、讲师4人。
金属电池(SMBs)具有低成本、高理论比容量(1166 mAh g-1)和低氧化还原电位(相对于SHE - 2.71V)的特点,使其极具潜力应用于下一代二次电池。然而,SMBs面临着一系列挑战,包括由于Na沉积行为不均匀而导致的枝晶生长,高活性Na金属阳极与电解质之间的界面副反应引起的电解质分解并产生易燃气体,从而引发泄漏和燃烧,造成重大的安全隐患。
中国科学院生态环境研究中心环境水质学国家重点实验室俞文正研究组在三价金属混凝的微观理论方面取得重要进展,相关成果以“Towards a molecular-scale theory for the removal of natural organic matter by coagulation with trivalent metals”为题,发表于Nature Water期刊。
金属电池由于潜在的高能量密度被认为是下一代最有前途的储能电池之一,然而传统有机液态电解液的挥发性、可燃性以及不均匀锂沉积导致的锂枝晶生长引起的安全隐患限制了其进一步发展。为了提高电池的安全性,固态电解质成为了当前的研究热点。其中,聚离子液体基固态电解质因其不可燃性、良好的机械性能、优异的化学/电化学稳定性而受到广泛关注。但是,室温离子电导率较低的缺点限制了其在全固态锂电池中的进一步应用。
铁电隧道结具有简洁的金属-超薄铁电-金属叠层器件结构。铁电隧道结利用铁电极化翻转调控量子隧穿效应以获得不同电阻态,从而实现数据存储功能。由于铁电极化亚纳秒尺度的超快翻转以及紧凑的交叉阵列结构,铁电隧道结具有高速读写、低功耗和高存储容量等优点,近年来在信息存储领域备受关注。隧穿电致电阻 (或开关比)是衡量隧道结性能的核心指标。2005年,理论模型提出,隧穿电致电阻与界面电荷屏蔽效应、铁电极化强度等相...
近日,西北农林科技大学化学与药学院裴志超教授团队在肿瘤温和磁热疗法研究领域取得新进展,研究成果发表于Advanced Science上。

中国研究生教育排行榜-

正在加载...

中国学术期刊排行榜-

正在加载...

世界大学科研机构排行榜-

正在加载...

中国大学排行榜-

正在加载...

人 物-

正在加载...

课 件-

正在加载...

视听资料-

正在加载...

研招资料 -

正在加载...

知识要闻-

正在加载...

国际动态-

正在加载...

会议中心-

正在加载...

学术指南-

正在加载...

学术站点-

正在加载...