工学 >>> 化学工程 >>> 化学工程基础学科 化工测量技术与仪器仪表 化工传递过程 化学分离工程 化学反应工程 化工系统工程 化工机械与设备 无机化学工程 有机化学工程 电化学工程 高聚物工程 煤化学工程 精细化学工程 造纸技术 毛皮与制革工程 制药工程 生物化学工程 化学工程其他学科
搜索结果: 1-15 共查到化学工程 复旦大学相关记录41条 . 查询时间(0.412 秒)
王飞,复旦大学材料科学系青年研究员,研究方向:1.高电压水系电池及相关电解液体系;2.锌基可充二次电池及相关电解液;3.高安全性有机锂\钠离子电池电解液;4.固态电解质。
孙阳庭,复旦大学材料科学系副教授,研究方向:缺陷微结构与钝性合金局部腐蚀;电子材料功能金属腐蚀与防护。
周永宁,复旦大学材料科学系教授,研究方向:电池材料中的物理化学问题;材料的同步辐射表征(原位技术);粉体材料和薄膜材料的制备;固态电池。
蒋益明,复旦大学材料科学系教授,研究兴趣和领域:(1)在腐蚀评价方法库建设建设方面:负责建立了熔盐腐蚀静态与动态电化学评价实验系统、高温摩擦-磨损-氧化动态评价系统、薄膜阴极腐蚀评价技术、铁素体不锈钢晶间腐蚀与缝隙腐蚀系列评价技术等12项重要腐蚀评价技术;使实验室拥有的总评价技术数量达到36项,形成国内耐蚀金属腐蚀评价相对完整体系。以该体系为基础,复旦大学成为宝钢集团不锈钢腐蚀首要合作单位和十余个...
顾广新,复旦大学材料科学系教授,研究方向:主要从事涂料研究开发与产业化工作,包括涂料原材料、涂料配方、涂料生产以及涂装整个领域。
董维阳,复旦大学环境科学与工程系高级工程师,研究方向为新型环境材料研制;光催化。
为了实现“碳达峰”、“碳中和”目标,将CO2转化成可利用的化学能源的“负碳”技术是世界各国关注的焦点。电催化还原CO2技术是通过外部电源不断的向体系提供高能的电子,进而攻击CO2,因此可以保证反应连续高效的发生。电催化可以利用再生能源作为电源,在比较温和的条件下(常温、常压)将CO2转化为可被利用的化学燃料。电催化技术具有成本低、易分离、灵活性强等优点,正成为国内外研究的热点。
清洁电能储存和转化是实现“碳中和”国家战略目标的重要手段,其中电解水制氢和二氧化碳电还原分别是实现工业化廉价制氢气和利用二氧化碳生产高附加值碳产物的重要技术。这两种技术的阳极反应--析氧反应(OER)动力学及其缓慢,成为限制其发展的瓶颈,因此寻找价格低廉、储量丰富且催化性能优异的电催化剂或者OER的替代反应成为近年来的研究热点。接下来,我们要分享的是张波课题组近期在该领域的系列研究成果。
固态电解质界面(SEI)是影响锂金属在锂离子电池中沉积剥离行为的关键部分。近期大量研究表明,氢化锂(LiH)是锂金属表面SEI的主要物质。然而,LiH具有脆性高和导电性差的特点,因此,连续生成的LiH被普遍认为是破坏锂金属负极循环稳定性的主要原因。近日,复旦大学材料科学系余学斌团队首次发现并揭示了LiH的锂离子传输机制,并证明LiH在提高锂金属负极循环稳定性的重要作用。相关成果于1月21日以“Id...
在多相催化中,催化剂颗粒的尺寸和形貌会极大的影响催化活性,因此其结构-活性关系是多相催化研究中的核心问题之一。催化剂活性由表面电子结构决定,因而多数“结构-活性”研究都集中在构建“结构-能量”关系这一部分。从能量关系出发,通过求解微动力学模型,可以得到反应速率等动力学信息。对于多相催化中常见的纳米催化剂,目前最有效的微动力学模型是动力学蒙特卡洛模拟(KMC),但受制于计算量,其应用通常被局限于小粒...
2020 年 9 月,中国宣布力争 2030 年前实现碳达峰(二氧化碳排放达到历史峰值)、2060 年前实现碳中和(二氧化碳净零排放),这是迄今为止世界各国中作出的最大减少全球变暖预期的气候承诺。二次电池,作为碳中和的“龙脉”,支撑着两大万亿赛道的主枝干——左擎“热、电、氢”等清洁能源,右牵动力电池与新能源车。可充电水系锌离子电池(ZIBs)采用水作为溶剂,具有成本低、运行安全性高、环境友好等优点...
现代信息技术与材料科学密切相关。上世纪五十年代以来,基于半导体材料的晶体管和集成电路深刻地改变了人类社会。高性能晶体管和电子芯片往往需要使用高质量晶体材料。现有的芯片技术主要采用单晶硅,而未来的智能芯片有可能使用聚合物半导体等新材料。合成高质量聚合物晶体对于未来电子学的发展具有重要意义。单晶生长需要物理或化学的可逆修复过程。单体通过聚合反应形成共价键连接的聚合物。在聚合反应过程中,利用共价键的断裂...
水凝胶是通过化学或物理交联形成的三维聚合物网络,可容纳大量水或组织液,能够在生理环境下溶胀但不溶解。由于具有良好生物相容性以及与人体软组织的相似性,水凝胶可满足生物医学领域的不同应用。
开环聚合是一种重要的聚合反应类型。复旦大学丁建东课题组结合其研究聚酯/聚醚热致水凝胶材料的需要,运用密度泛函理论,探讨了丙交酯单体在异辛酸亚锡/PEG体系作用下进行开环聚合的反应路径。
通常,聚丁二炔可由光引发或热引发的拓扑聚合反应进行制备,反应中无需添加剂的参与,但单体的有序预排列对1, 4-加成拓扑化学转变至关重要。长久以来,研究者们致力于依托超分子作用力实现丁二炔单体适宜的分子取向和有序的分子排列,构建诸如Langmuir-Blodgett膜、晶体、液晶、单分子层、凝胶和自组装等有序体系。这些策略大都采用高温或高能辐照(254 nm或γ-射线)实现引发,较高的能量对材料本身...

中国研究生教育排行榜-

正在加载...

中国学术期刊排行榜-

正在加载...

世界大学科研机构排行榜-

正在加载...

中国大学排行榜-

正在加载...

人 物-

正在加载...

课 件-

正在加载...

视听资料-

正在加载...

研招资料 -

正在加载...

知识要闻-

正在加载...

国际动态-

正在加载...

会议中心-

正在加载...

学术指南-

正在加载...

学术站点-

正在加载...