工学 >>> 光学工程 >>> 光学仪器及技术 >>> 近场光学及纳米检测技术 >>>
搜索结果: 1-15 共查到知识要闻 近场光学及纳米检测技术相关记录347条 . 查询时间(3.556 秒)
大环分子在分子纳米拓扑学领域中扮演着重要角色。通过化学键和机械键连接多个大环分子的策略已被证实是构建新颖超分子结构和分子机器的有效途径。然而,不含杂原子的全苯大环拓扑纳米碳需要在克服分子张力的同时精确调控分子的拓扑结构,因而其合成面临挑战。直接将全苯骨架的对苯撑大环进行官能化,以模块化的方式进行有序连接,有望为探索复杂拓扑结构的分子纳米碳提供新的合成途径。合理选择大环合成子与适当的修饰方法,构建发...
经过数十年发展,半导体工艺制程不断逼近亚纳米物理极限,但传统硅基集成电路难以依靠进一步缩小晶体管面内尺寸来延续摩尔定律。发展垂直架构的多层互连CMOS逻辑电路,从而获得三维集成技术的突破,是国际半导体领域积极探寻的新路径之一。
糖作为生命体系中三大聚合物分子之一,具有远超核酸和蛋白的复杂结构。实现高效的糖结构鉴定和序列解析是开展糖类物质活性与功能研究的基础,是推动糖科学快速发展的关键环节之一。前期工作中,中国科学院上海药物研究所高召兵联合攻关团队利用基因工程改造后的生物纳米孔描绘了糖官能团的电信号指纹图谱,将纳米孔在糖领域的研究从“糖检测”正式推进至“糖测序”阶段,纳米孔糖测序(nanopore glycan seque...
细菌生物膜具有感染能力,几乎可以侵袭人体任何器官,对人类健康造成严重威胁。尤其是对于免疫功能低下的人群,细菌生物膜引发的严重慢性和持续性感染可能导致致命后果。当前,治疗生物膜感染常依赖于强化抗生素,但长期用药易导致耐药性,不仅削弱治疗效果,还可能诱发二重感染。准确诊断生物膜感染对于有效治疗至关重要,而传统的诊断方法如组织活检具有侵入性,耗时且可能延误治疗。因此,研发非侵入性诊疗手段,以实现对细菌生...
开发通用流感疫苗在应对流感病毒株变异及潜在全球大流行时至关重要。过程工程所研发中心王连艳研究员团队和中国疾病预防控制中心病毒病预防控制所谭文杰研究员团队,以聚乳酸(PLA)为原料构建了阳离子固体脂质纳米佐剂结合通用流感抗原的新型疫苗(NM2e@DDAB/PLA纳米疫苗)。目前,在小鼠动物模型上已证实该疫苗在预防流感病毒方面的有效性和安全性。相关研究成果于5月9日发表在ACS Nano上(DOI:1...
智能主动变形织物是新兴的功能材料,在可穿戴织物中具有应用前景,如可以自发调整形状增加穿戴舒适度或是作为助力设备帮助人类更轻松地提起重物。智能变形织物的运动可以由多种方式触发。其中,由电化学离子触发的变形织物具备可控性好、变形程度大、电压低、响应快及热效应不明显等特点,在可穿戴设备中具有应用潜力。然而,开发电化学驱动变形织物却受到液态工作环境的约束。
2024年5月8日,中国科学院大连化学物理研究所生物技术研究部生物分离与界面分子机制研究组(1824组)卿光焱研究员团队与中药科学研究中心(2800组群)梁鑫淼研究员团队合作,在中性糖链结构解析方面取得新进展。合作团队通过对糖链进行衍生化标记的策略,利用纳米孔的突变,实现了对基于蛋白纳米孔的糖链精确结构的解析,并揭示了糖链分子与纳米孔界面相互作用机制。
2024年4月28日,中国科学院合肥物质院固体所纳米材料与器件技术研究部热控功能材料研究团队与马萨诸塞大学阿默斯特分校吴年强教授团队合作,成功合成了三种不同晶相的具有高强拉曼信号增强性能的硼化钼陶瓷粉体,相关成果发表在国际期刊Small上。
2024年4月24日,中国科学院微生物研究所张延平研究团队在Advanced Science发表论文,题为“Rewiring photosynthesis by water-soluble fullerene derivatives for solar-powered electricity generation”,该研究利用水溶性富勒烯纳米材料改变光合电子传递方向,从而提高生物光电转化效率。
“基因技术”作为我国“十四五”规划和2035远景规划前沿科技和产业变革领域之一,将重点攻克基因与生物前沿技术,推动精准医疗基因测序前沿技术应用及产业变革发展。固态纳米孔技术,不需要对DNA进行标记、PCR放大等预处理,具有更长的读取长度、高通量和成本效益等特点,被认为是当前最具有前景的基因测序技术,在基因检测技术研究及其临床应用领域受到广泛关注。2024年来,精准医疗团队基于重庆研究院跨尺度制造技...
2024年4月20日,中国科学院大连化学物理研究所催化基础国家重点实验室纳米与界面催化研究中心(502组群)傅强研究员团队在金属纳米催化剂的动态分散研究方面取得新进展,发现含水氧化性气氛可以诱导担载Cu纳米颗粒在室温下的自发氧化分散。
碳点(CDs)是2024年来引起广泛关注的一类纳米材料,这类碳基材料具有可调谐发射波长、良好的生物相容性和光稳定性,应用于生物成像、药物递送、传感等领域。然而,尽管碳点具有上述特性,却经常受到聚集荧光猝灭(ACQ)效应的限制。在固态或者聚集态下,碳点的荧光强度大幅度下降甚至完全消失,这限制了其在生物成像中的应用。而聚集诱导发光(AIE)效应的发现打破了传统认知,证实了一些有机染料在聚集状态下会表现...
加工硬化是金属结构材料拉伸塑性的基础。加工硬化的前提是拉伸变形在晶粒内部形成、增殖并储存的位错,位错之间以及位错与界面、析出相等的交互作用引起加工硬化。当晶粒细化至纳米尺度时,晶粒内部较难产生并储存位错,降低了加工硬化能力,引起了低塑性瓶颈。在高强度纳米结构金属中,如何形成并储存位错是实现加工硬化的难点。
加工硬化是金属结构材料拉伸塑性的基础,其前提是拉伸变形时在晶粒内部形成、增殖并储存的位错,位错之间以及位错与界面和析出相等的交互作用引起加工硬化。当晶粒细化至纳米尺度时,晶粒内部则很难产生并储存位错,降低了加工硬化能力,引起低塑性瓶颈。在高强度纳米结构金属中,如何形成并储存位错是实现其加工硬化的难题,更是挑战。
具有拓扑特性的纳米尺度磁性(反)斯格明子有望作为新型磁性信息单元构建高密度、高速度、低功耗的磁性信息器件来满足大数据、云计算、智能化信息时代的迫切需要,是当前凝聚态物理和自旋电子学领域的研究热点和关键科技应用前沿。然而,磁性(反)斯格明子不容易被电流驱动,而且一旦开始运动,还会受到内禀斯格明子霍尔效应的马格努斯力而侧向偏转甚至湮灭导致信息丢失,使得利用电流驱动磁畴结构实现数据信息传输寻址功能的拓扑...

中国研究生教育排行榜-

正在加载...

中国学术期刊排行榜-

正在加载...

世界大学科研机构排行榜-

正在加载...

中国大学排行榜-

正在加载...

人 物-

正在加载...

课 件-

正在加载...

视听资料-

正在加载...

研招资料 -

正在加载...

知识要闻-

正在加载...

国际动态-

正在加载...

会议中心-

正在加载...

学术指南-

正在加载...

学术站点-

正在加载...