工学 >>> 化学工程 >>> 电化学工程 >>> 电解 电镀 电池 腐蚀与防腐化学 电化学工程其他学科
搜索结果: 61-75 共查到知识要闻 电化学工程相关记录1456条 . 查询时间(2.203 秒)
高效新能源存储与转换技术在经济可持续发展等方面中具有重要作用,是促进节能减排的重要需求。以多种方式高效利用廉价、高丰度的气态反应物(如N2等)向高附加值化学品的转化是重要的手段。然而,由于N2分子的惰性和产品范围有限,这一“圣杯反应”面临挑战。双(三氟甲烷磺酰基)亚胺锂(通常称为LiTFSI)及其类似物锂盐是锂电池和太阳能电池的关键高端电解质。然而,当前LiTFSI的商业化热化学合成依赖于NH3中...
质子交换膜电解水(PEMWE)制氢相比于传统的甲烷热重整制氢更加绿色环保,并且相对于碱性电解水制氢具有更高的转换效率和更长的寿命,因此被认为是非常具有前景的制氢方法。其中有序化结构因其能够降低催化剂载量,提升PEMWE的性能而备受关注。目前,有序化结构可以分为有序化电子导体和有序化质子导体。然而单组分的有序化结构不能够满足PEMWE复杂的实际运行情况。 
2024年1月5日,中国科学院近代物理研究所材料中心与先进能源科学与技术广东省实验室合作,利用重离子辐照技术和化学蚀刻工艺,研发出用于锂离子电池的耐高温PET隔膜。相关研究成果以《利用重离子辐照技术直接制备聚酯耐高温锂离子电池隔膜》为题,发表在ACS Applied Materials & Interfaces上。
2024年1月4日,中国科学院近代物理研究所材料中心科研人员与先进能源科学与技术广东省实验室合作,利用重离子辐照技术和化学蚀刻工艺成功研发了一种用于锂离子电池的耐高温PET隔膜。该研究成果以“利用重离子辐照技术直接制备聚酯耐高温锂离子电池隔膜”为题发表在《ACS 应用材料与界面》上。
2024年1月3日,中国科学院大连化学物理研究所储能技术研究部研究员李先锋团队,开发出70kW级高功率密度全钒液流电池单体电堆。该单体电堆体积功率密度由目前的70kW/m3提高至130kW/m3,在体积保持不变的条件下,功率由30kW提高至70kW,成本较目前的30kW级电堆降低40%,有望助推全钒液流电池的商业化进程。
2023年12月31日,中国科学院大连化学物理研究所储能技术研究部(DNL17)李先锋研究员团队开发出70kW级高功率密度全钒液流电池单体电堆。该单体电堆体积功率密度由目前的70kW/m3提高至130kW/m3,在体积保持不变的条件下,功率由30kW提高至70kW,成本较目前的30kW级电堆降低40%,有望助推全钒液流电池的商业化进程。
2023年12月27日,中国科学院合肥物质院固体所胡林华研究员团队在水系锌离子电池(AZIBs)电解液研究方面取得了新进展。他们通过在电解液中引入亲锌性马来酸钠添加剂,成功地改变了锌电极的表面生长,从而显著提高了电池的充放电可逆性和循环稳定性。这一研究成果发表在国际期刊 Advanced Functional Materials 上。
相比基于单电子转移反应的拓扑嵌入型正极,基于多电子转移反应的转换型金属氟化物正极可有效提升电池能量密度,且兼具低成本和环境友好等优势。在氟化物正极的发展过程中,氟化铁(FeF3)和氟化铜(CuF2)材料虽然都具有高的理论能量密度(FeF3: 1943 Wh/kg; CuF2: 1874 Wh/kg)和反应电位(FeF3: 2.73 V vs. Li+/Li; CuF2: 3.55 V vs. Li...
在实现碳达峰和碳中和目标的背景下,开发高能量密度、长寿命的锂离子电池至关重要。相较于传统石墨负极,具有更高理论比容量的硅基材料被认为是颇有前景的锂离子电池负极材料。然而,硅基负极在充放电时存在较大的体积变化,并伴随有材料结构粉化和电极/电解质间的界面副反应,限制了其循环寿命。因此,优化硅基材料的结构、开发与之匹配的电解质,对于进一步提升硅基负极材料的循环性能具有重要意义。 
介绍微纳电化学制造技术原理,微细电解线切割、电解铣削、组合/复合加工等技术重要研究进展及其工程应用。
电催化二氧化碳还原(CO2R)制备高附加值碳基产品一方面可实现二氧化碳的资源化利用,另一方面有效储存间歇性可再生电能。在碱性或中性介质中,CO2R的法拉第效率和电流密度取得了显著进步;然而,碱性和中性环境下二氧化碳会与电解液中的羟基发生反应生成碳酸盐,造成大量的二氧化碳损耗,限制了二氧化碳单程转化效率。在酸性介质中电解二氧化碳可有效解决碳利用率低的难题。然而,在酸性介质中,析氢反应的动力学非常快,...
在实现碳达峰和碳中和目标的大背景下,开发高能量密度、长寿命的锂离子电池至关重要。相较于传统石墨负极,具有更高理论比容量的硅基材料被认为是极具前景的锂离子电池负极材料。然而,硅基负极在充放电时存在较大的体积变化,并伴随有材料结构粉化和电极/电解质间的界面副反应,限制了其循环寿命。因此,优化硅基材料的结构并开发与之匹配的电解质,对于进一步提升硅基负极材料的循环性能具有重要意义。 
锂金属由于具有极高的理论比容量(3860 mAh g-1)和极低的电化学电势(-3.04V Vs. SHE),是下一代高比能锂电池的理想负极材料。然而,高活性锂金属所带来的枝晶生长问题严重阻碍了其应用进程。隔膜表面改性策略由于具有低成本、可替代性强的优点,广泛应用于抑制锂金属电池内枝晶生长的研究。然而,在其研究及实际应用过程中仍存在两个关键问题:功能层通常为不导锂的非活性材料,阻碍锂离子的快速传输...
锂金属由于具有极高的理论比容量(3860 mAh g-1)和极低的电化学电势(-3.04V Vs. SHE),是下一代高比能锂电池的理想负极材料。然而,高活性锂金属所带来的枝晶生长问题严重阻碍了其应用进程。隔膜表面改性策略由于具有低成本、可替代性强的优点,广泛应用于抑制锂金属电池内枝晶生长的研究。然而,在其研究及实际应用过程中仍存在两个关键问题:功能层通常为不导锂的非活性材料,阻碍锂离子的快速传输...
近日,中国科学技术大学姚宏斌教授研究团队联合复旦大学商城教授与浙江工业大学陶新永教授研究团队基于锂、钽和氯三元体系,通过组分的调控与优化,成功构建了玻璃态锂离子传导网络。在这一体系创新的基础上,开发了高锂离子电导率的无定形钽系氯化物固态电解质,并扩展了一系列高性能复合固态电解质体系,克服了传统晶态固态电解质结构和组分设计的限制,并基于此实现了宽温度内范围适用的高镍正极型全固态锂电池。相关研究成果以...

中国研究生教育排行榜-

正在加载...

中国学术期刊排行榜-

正在加载...

世界大学科研机构排行榜-

正在加载...

中国大学排行榜-

正在加载...

人 物-

正在加载...

课 件-

正在加载...

视听资料-

正在加载...

研招资料 -

正在加载...

知识要闻-

正在加载...

国际动态-

正在加载...

会议中心-

正在加载...

学术指南-

正在加载...

学术站点-

正在加载...